TitleEffect of endogenous methylglyoxal on Chinese hamster ovary cells grown in culture.
Publication TypeJournal Article
Year of Publication1996
AuthorsChaplen, FW, Fahl, WE, Cameron, DC
JournalCytotechnology
Volume22
Issue1-3
Pagination33-42
Date Published1996 Jan
ISSN0920-9069
Abstract

Methylglyoxal is a ketoaldehyde that reacts readily under physiological conditions with biologically relevant ligands, such as amine and sulfhydryl groups. It is produced in mammalian cells primarily as a by-product of glycolysis. The level of glucose, L-glutamine and fetal bovine serum in culture media was found to significantly affect levels of intracellular methylglyoxal in Chinese hamster ovary cells. Medium with 25 mM glucose and 5 mM L-glutamine caused an increase in free methylglyoxal levels of 90 to 100% relative to medium containing 5 mM glucose and 2 mM L-glutamine. Both of these media compositions are representative of those found in commercially available media. Pseudomonas putida glyoxalase I was expressed in Chinese hamster ovary cells to enhance methylglyoxal detoxification. The Chinese hamster ovary cell clones showed an 80 to 90% decrease in free methylglyoxal levels. The colony-forming ability of these cells was compared to wild-type Chinese hamster ovary cells under conditions found to cause elevated methylglyoxal levels. The wild-type cells showed a 10% decrease in colony-forming ability relative to the clones. This decrease was found to be statistically significant (P>0.99) by analysis of variance. The variation in colony-forming ability amongst the clones was statistically insignificant. More importantly, the clones shoed increased colony-forming ability relative to the wild-type cells under conditions of higher methylglyoxal production with fair to good statistical significance (P>0.75 to P>0.95). This result is the first quantifiable evidence that endogenously produced methylglyoxal can negatively affect cell function under conditions found in animal cell culture.

DOI10.1007/BF00353922
Alternate JournalCytotechnology
PubMed ID22358913