Stacey Harper

Stacey Harper

Associate Professor
ONAMI Signature Faculty Fellow

Dept.: EMT / CBEE
Ph.D., University of Nevada Las Vegas 
Univ.Phone: 541.737.2791
Fax: 541.737.0497

Harper Nanotoxicology Lab


Our laboratory investigates the environmental, health and safety impacts of nanotechnology in order to support the responsible development of this rapidly growing industry. Our current lack of information on the environmental fate and toxic potential of nanomaterials prohibits us from performing valid risk assessments. Issues of particle behavior, bioavailability and toxicity are central to quantitative risk assessment. Integrative studies in the Harper laboratory are designed to effectively improve our understanding of how and why nanomaterials interact with and sometimes alter living systems.

Comparative Ecotoxicology - Food web studies comprising 4-trophic microcosms of algae, daphnids, crayfish embryos and zebrafish embryos are being used to determine the bioavailability and biomagnification potential of nanoparticles in simulated aquatic ecosystems. Both acute and chronic exposures are being conducted to delineate the short and long-term dynamics and impact of nanoparticle-biological interactions in controlled aquatic environments.

Integrative Studies to Define Drivers of Nanomaterial Toxicity – This work addresses the hypothesis that uptake, effects and mechanism of toxicity are dependent on nanomaterial size, shape, and surface chemistry.  The objective is to determine the relative influence that each of these parameters has on toxicity using nanocrystalline cellulose (NCC) as a model nanomaterial platform.  We are currently determining the limits of data-derived nanomaterial structure-activity relationships (nano-SARs) for environmentally and occupationally relevant nanomaterials.  The embryonic zebrafish model is being used to define dose-responses to a series of prioritized NCC formulations. Uptake, biodistribution and time-course relationships are also being determined for the subset of NCC that elicit toxicity in embryonic zebrafish.  The research goal is to identify inherent nanomaterial properties that confer toxicity. 

Knowledgebase of Nanomaterial-Biological Interactions - The immediate need to gain comprehensive information on biological-nanomaterial interactions has led us to develop a comparative knowledgebase (i.e. knowledgebase of Nanomaterial-Biological Interactions, NBI, NBI is intended to consolidate and integrate data of nanomaterial effects in experimental animal models (including humans) and evaluate biological effects from a variety of research platforms (i.e. in vivo and in vitro approaches). This effort will provide unbiased informatic approaches to identify the relative importance of characterization parameters on nanomaterial-biological interactions and to determine the capacity of biological assessment platforms to provide us with knowledge on the biological activity and toxic potential of nanomaterials.


Peer-Reviewed Publications 

  1. Harper, S.L., J.L. Carriere, J.M. Miller, J.E. Hutchison, B.L.S. Maddux and R.L. Tanguay.  2011.  Systematic evaluation of nanomaterial toxicity: utility of standardized materials and rapid assays. ACS Nano 5: 4688-4697.
  2. Thomas, D.G., F. Klaessig, S.L. Harper, M. Fritts, M.D. Hoover, S. Gaheen, T.H. Stokes, R. Reznic-Zellen, E.T. Freund, J.D. Klemm, D.S. Paik and N.A. Baker.  2011.  Informatics and standards for nanomedicine technology.  Wiley Interdisciplinary Reviews: WIREs Nanomedicine and Nanobiotechnology 3: 511-532.   doi: 10.1002/wnan.152
  3. Stone, D.L., B.J. Harper, I. Lynch, K. Dawson and S.L. Harper.  2010.  Exposure assessment: Recommendations for nanotechnology-based pesticides.  International Journal of Occupational and Environmental Health 16:  467-474.
  4. Harper, S.L., J. Hutchison, B.L.S. Maddux and R.L. Tanguay.  2010.  Integrative strategies to understand nanomaterial-biological interactions. International Perspectives on Environmental Nanotechnology: Applications and Implications 2: 51-56.
  5. Harper, S.L., C.Y. Usenko, J. Hutchison, B.L.S. Maddux and R.L. Tanguay.  2008.  In vivo biodistribution and toxicity depends on nanomaterial composition, size, surface functionalization and route of exposure.  Journal of Experimental Nanoscience 3: 195-206.     
  6. Vercruysse, K.P., S.L. Harper, D.M. Ivory, M.M. Whalen, K.S. Saili and R.L. Tanguay.  2008.  Potential anti-inflammatory properties of biologically-synthesized nanoparticles of gold or silver.  Nanotech 2008 2: 501-504.
  7. Harper, S.L., J.A. Dahl, B.L.S. Maddux, R.L. Tanguay and J.E. Hutchison.  2008.  Proactively designing nanomaterials to enhance performance and minimize hazard.  International Journal of Nanotechnology 5: 124-142.      
  8. Usenko, C.Y., S.L. Harper and R.L. Tanguay.  2008.  Exposure to C60 elicits an oxidative stress response in embryonic zebrafish.  Toxicology and Applied Pharmacology 229, 44-55.  
  9. Usenko, C.Y., S.L. Harper and R.L. Tanguay.  2007.  In vivo evaluation of carbon fullerene toxicity using embryonic zebrafish.  Carbon 45: 1891-1898.    
  10. 10.  Harper, S.L., B.L.S. Maddux, J. Hutchison and R.L. Tanguay.  2007.  Biodistribution and toxicity of nanomaterials in vivo:  effects of composition, size, surface functionalization and route of exposure.  Nanotech 2007 2: 666-669. 
  11. 11.  Harper, S.L. and C.L Reiber.  2006.  Cardiac development in crayfish: ontogeny of cardiac physiology and aerobic metabolism in the red swamp crayfish Procambarus clarkii.  Journal of Comparative Physiology B 176: 405-414.
  12. 12.  Harper, S.L. and C.L Reiber.  2006.  Metabolic, respiratory and cardiovascular responses to acute and chronic hypoxic exposure in tadpole shrimp Triops longicaudatus.  Journal of Experimental Biology 209: 1639-1650.
  13. 13.  Rogers, K.R., S.L. Harper, G. Robertson.  2005.  Screening for toxic industrial chemicals using semipermeable membrane devices with rapid toxicity assays.  Analytica Chimica Acta 543:  229-235.    
  14. 14.  Harper, S.L. and C.L Reiber.  2004.  Physiological development of the embryonic and larval crayfish heart.  Biological Bulletin 206:  78-86.
  15. 15.  Reiber, C.L. and S.L. Harper.  2001.  Perspectives on cardiac physiological ontogeny in crustaceans.  Zoology 104:  103-113.
  16. 16.  Harper, S.L. and C.L. Reiber.  2000.  Developmental cardiac response to GABA in the red swamp crayfish Procambarus clarkii and the relevance to crayfish burrow ecology.  Journal of Arizona-Nevada Academy of Science 32 (2):  158-163.
  17. 17.  Harper, S.L. and C.L Reiber.  2000.  Ontogeny of neurohormonal regulation of the cardiovascular system in crayfish Procambarus clarkii.  Journal of Comparative Physiology B 171:  577-583.
  18. 18.  Harper, S.L. and C.L. Reiber.  1999.  Influence of hypoxia on cardiac functions in the grass shrimp (Palaemonetes pugio Holthius).  Comparative Biochemistry and Physiology A. 124:  569-73.

Peer-Reviewed Archival Conference Publications 

  1. Koretsky, M.D., A. Yokochi and S.L. Harper.  2011.  Development of an option in nanotechnology: elements of student learning.  Proceedings of the IEEE Nano Conference, Portland (USA) August 15-19, 2011. 
  2. Mishra, A., S.L. Harper and S-I. Yun.  2011.  Interaction of biosynthesized gold nanoparticles with genomic DNA isolated from E. coli and S. aureus.  Proceedings of the IEEE Nano Conference, Portland (USA) August 15-19, 2011. 
  3. Harper, S.L., C. Usenko and R.L. Tanguay.  2006.  Differential distribution and toxicity of nanomaterials in vivo.  Proceedings of the American Institute of Chemical Engineering (AIChE) Annual Meeting, San Francisco (USA) November 12-17, 2006. 
  4. Harper, S.L. 2008. The Complex Task of Defining Nanomaterial-Biological Interactions. SPIE Newsroom. DOI: 10.1117/2.1200901.1427